This work was supported by the Non-Directed Research Fund of the Korea Research Foundation, 1991.

Lists of structure factors, anisotropic displacement parameters, angles within the polyanion and probable hydrogen-bond distances have been deposited with the IUCr (Reference: AB1113). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Buerger, M. J. (1959). Vector Space, pp. 5–29, 41–64. New York: Wiley.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Lee, H. Y., Park, K. M. & Lee, U. (1991). Acta Cryst. C47, 1959-1961.
- Lee, U. (1988). Bull. Korean Chem. Soc. 9, 256-257.
- Lee, U. & Sasaki, Y. (1984). Chem. Lett. pp. 1297-1300.
- Nagano, O., Lee, U., Ichida, H. & Sasaki, Y. (1990). Bull. Korean Chem. Soc. 11, 15-19.
- Ozawa, Y., Hayashi, Y. & Isobe, K. (1991). Acta Cryst. C47, 637-638. Perloff, A. (1970). Inorg. Chem. 9, 2228-2239.
- Sakurai, T. & Kobayashi, K. (1979). Rikagaku Kenkyusho Hokoku, 55, 69-77. (In Japanese.)

Acta Cryst. (1994). C50, 1659-1661

Tetrapotassium Tetrahydrogen- β -hexamolybdoplatinate(IV) Dihydrate, K₄[H₄ β -PtMo₆O₂₄].2H₂O

HEA CHUNG JOO, KI MIN PARK AND UK LEE

Department of Chemistry, College of Natural Sciences, National Fisheries University of Pusan, Nam-ku, Pusan 608-737, Korea

(Received 19 November 1993; accepted 4 May 1994)

Abstract

The potassium salt containing the $[H_4\beta-PtMo_6O_{24}]^{4-}$ polyanion, which has approximate 2mm symmetry (bent structure), has been isolated and its structure determined by single-crystal X-ray diffraction. This polyanion is an isomeric form of the $\overline{3m}$ (flat-structure) species.

Comment

The hexamolybdoheteropolyanion (the so-called Anderson-structure heteropolyanion) has possible flat and bent isomeric forms. This isomerism was investigated initially by the structure determinations of $(NH_4)_{4.5}[H_{3.5}\alpha$ -PtMo₆O₂₄].3H₂O and $(NH_4)_4[H_4\beta$ -PtMo₆O₂₄].1.5H₂O (Lee & Sasaki, 1984), and K_{3.5}[H_{4.5}\alpha-PtMo₆O₂₄].1.5H₂O (Lee, 1988; Lee & Sasaki, 1994). Surprisingly, the isomerism occurs because of a change of only 0.5 in the number of non-acidic H atoms attached to the polyanion. It seems that the gradual protonation of the polyanion plays an important role in the isomerism; the characterization of the $[H_4\beta$ -PtMo₆O₂₄]⁴⁻ polyanion is therefore very important. Problems encountered in the structure determination of $(NH_4)_4[H_4\beta$ -PtMo₆O₂₄].1.5H₂O made detailed discussion difficult. These included disordered NH[‡] ions and water molecules, distinction between the N(NH[‡]) and O(H₂O) atoms, and determining which O atoms in the polyanion were protonated. These problems are solved by the structure determination of the title compound.

Fig. 1. The structure of the $[H_4\beta$ -PtMo₆O₂₄]⁴⁻ polyanion (H atoms not shown; starred O atoms are protonated).

Fig. 2. The crystal packing of the $[H_4\beta$ -PtMo₆O₂₄]⁴⁻ polyanion in the unit cell shown as a polyhedral model with interanion hydrogen bonds.

Pt-Mo1

The structural characteristics of the $K_4[H_4\beta$ -PtMo₆O₂₄].2H₂O polyanion are the same as those of [H₂SbMo₆O₂₄]⁵⁻ (Ogawa, Yamamoto, Lee, Ichida & Sasaki, 1988). All the atoms of the polyanion are at general positions and the potassium ions and water molecules do not show any disorder. The O atoms in the polyanion are classified as Ot, Ob, Oc and Od according to their coordination.

The identities of the O atoms were determined from the strong interanion hydrogen bonds (Fig. 2) and unusually long Mo1-O21c, Mo2-O21c, Mo5-O22c, Mo6-O22c, Mo3-O15b and Mo4-O19b bonds. All protonated O atoms in the polyanion (O21c, O22c, O15b and O19b) contribute to the formation of interanion hydrogen bonds (Fig. 2).

Experimental

The title compound was prepared by mixing hot aqueous solutions (total volume 50 ml) of K₂Pt(OH)₆ and K₂MoO₄ in the molar ratio 1:6 (4 \times 10⁻⁴:2.4 \times 10⁻³ M). The pH was adjusted to \sim 5.4 by adding dilute HNO₃. The solution was concentrated to about 20 ml by heating on a water bath. Crystals were isolated at room temperature.

Crystal data

K ₄ [H ₄ β-PtMo ₆ O ₂₄].2H ₂ O	Mo $K\alpha$ radiation
$M_r = 1351.47$	$\lambda = 0.71069 \text{ Å}$
Triclinic	Cell parameters from 25
PĪ	reflections
a = 10.636 (2) Å	$\theta = 19.895 - 19.98^{\circ}$
b = 12.041 (2) Å	$\mu = 9.76 \text{ mm}^{-1}$
c = 10.567 (1) Å	T = 298 K
$\alpha = 113.68 (1)^{\circ}$	Hexagonal prism
$\beta = 110.54 (1)^{\circ}$	$0.3 \times 0.3 \times 0.1$ mm
$\gamma = 81.97 (1)^{\circ}$	Lemon yellow
V = 1160.6 (3) Å ³	•
Z = 2	
$D_x = 3.87 \text{ Mg m}^{-3}$	
Data collection	

Data collection		Pt—Mo2	3.343 (1)	Mo1-Mo3
Rigaku AFC-5S diffractome- ter $\omega - 2\theta$ scans Absorption correction: by integration from crystal shape $T_{min} = 0.213, T_{max} =$ 0.647 10231 measured reflections 9170 independent reflections 9126 observed reflections $[I > 3.0\sigma(I)]$ Refinement	$R_{int} = 0.0053$ $\theta_{max} = 35^{\circ}$ $h = 0 \rightarrow 15$ $k = -17 \rightarrow 17$ $l = -15 \rightarrow 15$ 3 standard reflections monitored every 150 reflections intensity variation: <1%	PtMo3 PtMo4 PtMo5 PtMo6 Pt015b† Pt021c† Pt022c† Pt022d Pt022d Mo1021c† Mo5022c† Mo1013b Mo1016b Mo2014b Mo2013b Mo3015b†	3.342 (1) 3.389 (1) 3.327 (1) 3.316 (1) 2.001 (6) 2.010 (8) 2.006 (5) 2.006 (5) 2.006 (7) 2.013 (6) 2.339 (8) 2.350 (7) 1.924 (5) 1.929 (7) 1.963 (8) 1.909 (8) 1.950 (8) 1.950 (8) 2.338 (8)	Mo2—Mo4 Mo3—Mo5 Mo4—Mo6 Mo5—Mo6 Mo1—O23d Mo4—O24d Mo5—O23d Mo6—O24d Mo6—O24d Mo6—O24d Mo6—O22ct Mo1—O2t Mo1—O2t Mo1—O5t Mo2—O3t Mo2—O3t Mo2—O3t Mo3—O4t
Refinement on F R = 0.044 wR = 0.058 S = 3.84	$(\Delta/\sigma)_{\text{max}} = 0.068$ $\Delta\rho_{\text{max}} = 3.26 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{\text{min}} = -4.15 \text{ e } \text{\AA}^{-3}$ Extinction correction: none	Mo3-O17b Mo4-O14b Mo4-O18b Mo4-O19b† Mo5-O17b	1.910 (6) 1.913 (6) 1.969 (6) 2.351 (6) 1.949 (6)	Mo4-07t Mo4-09t Mo5-010t Mo5-011t Mo6-01t

9170 reflections	Atomic scattering factors
335 parameters	from International Tables
H atoms not located	for X-ray Crystallography
$w = 1/[\sigma^2(F_o) + 0.02F_o ^2]$	(1974, Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters ($Å^2$)

$$B_{\text{eq}} = (4/3) \sum_i \sum_j \beta_{ij} \mathbf{a}_i \cdot \mathbf{a}_j.$$

	x	У	Z	B_{eq}
Pt	0.26247 (3)	0.11887 (2)	0.09688 (3)	0.68 (1)
Mo1	0.50146 (7)	0.30571 (6)	0.16031 (7)	1.09 (2)
Mo2	0.41385 (7)	0.31209 (6)	0.43662 (7)	1.07 (2)
Mo3	0.34378 (7)	0.13561 (6)	-0.17308 (7)	1.05 (2)
Mo4	0.18213 (7)	0.13642 (6)	0.38760 (7)	1.05 (2)
Mo5	0.06664 (6)	0.25817 (6)	-0.11788 (7)	1.00 (2)
Mo6	-0.01211 (6)	0.25707 (6)	0.16591 (7)	1.02 (2)
01/	-0.1710 (6)	0.2139 (6)	0.0399 (8)	1.8 (2)
O2t	0.6653 (7)	0.3025 (7)	0.2649 (8)	2.0 (2)
031	0.5809 (7)	0.3100 (7)	0.5343 (8)	1.9 (2)
041	0.3887 (7)	0.0060 (6)	-0.3000 (7)	1.7 (2)
051	0.4899 (8)	0.4211 (6)	0.1000 (8)	2.0 (2)
O6t	0.3671 (7)	0.2527 (7)	-0.2144 (8)	2.0 (2)
07t	0.1772 (8)	0.0093 (6)	0.4220 (8)	2.0 (2)
O81	0.3409 (8)	0.4259 (6)	0.5478 (8)	2.0 (2)
O91	0.1303 (7)	0.2525 (7)	0.5162 (7)	2.0 (2)
O10(0.1058 (7)	0.3874 (6)	-0.1279 (8)	1.8 (2)
011/	-0.0985 (7)	0.2301 (7)	-0.2236 (8)	2.0 (2)
0121	-0.0351 (7)	0.3802 (6)	0.3086 (8)	1.8 (2)
O13b	0.5096 (6)	0.1643 (5)	-0.0080 (6)	1.3 (2)
O14b	0.3704 (6)	0.1699 (5)	0.4602 (6)	1.3 (2)
O15b	0.3090 (6)	0.0025 (5)	-0.0784 (6)	1.2 (2)
O16b	0.4152 (6)	0.3854 (5)	0.3070 (6)	1.3 (2)
017 <i>b</i>	0.1522 (6)	0.1299 (6)	-0.2441 (6)	1.4 (2)
O18b	0.0105 (6)	0.1227 (5)	0.2292 (7)	1.3 (2)
O19b	0.2485 (6)	0.0047 (5)	0.1875 (6)	1.3 (2)
O20b	0.0479 (6)	0.3373 (5)	0.0731 (6)	1.2 (2)
O21c	0.4514 (6)	0.1607 (5)	0.2308 (6)	1.0(1)
O22c	0.0689 (5)	0.1086 (5)	-0.0273 (6)	1.0(1)
O23d	0.2855 (6)	0.2401 (5)	0.0206 (6)	1.0(1)
O24d	0.2086 (6)	0.2401 (5)	0.2663 (6)	0.9 (1)
K1	0.2505 (3)	0.4673 (2)	0.7656 (3)	2.20 (6)
K2	0.2215 (3)	0.5335 (2)	0.2047 (3)	2.52 (7)
K3	0.3935 (3)	0.8662 (3)	0.3454 (3)	3.08 (8)
K4	0.1466 (4)	0.8616 (4)	0.5749 (5)	5.1 (2)
O 1w	0.6601 (9)	0.3538 (10)	-0.0954 (12)	3.4 (4)
O2w	0.8622 (10)	0.3880 (11)	0.5557 (11)	3.7 (4)

Table 2. Selected geometric parameters (Å, °)

Mo1-Mo2

3.333(1)

3.231 (1)

3.240(1)

3.241 (1)

3.220(1) 3.390(1)

2.296 (5)

2.297 (5)

2.182 (6)

2.218(7) 2.309 (5)

2.230 (5) 2.332 (6)

2.445 (6)

1.710(7)

1.721 (9)

1.716(7)

1.706 (8) 1.738 (6)

1.71(1)

1.721 (9)

1.700(7)

1,717 (9)

1.713 (6) 1.735 (6)

3.341 (1)

Mo5O20b	1.925 (7)	Mo6-0121	1.701 (6)
Mo6018b	1.942 (8)	Mo6O20b	1.917 (8)
$O22c \cdot \cdot \cdot O18b^{i}$	2.764 (7)	$O21c \cdots O4t^{ii}$	2.609 (9)
O15b···O13b ⁱⁱ ‡	2.783 (9)	0196···011 ¹ ‡	2.742 (8)
Mo1-Pt-Mo2	59.82 (2)	Mo1-Pt-Mo4	117.36 (2)
Mo1-Pt-Mo5	84.78 (2)	Mo2-Pt-Mo6	82.75 (2)
Mo3-Pt-Mo4	173.55 (2)	Mo5-Pt-Mo6	61.38 (2)
Mo2-Mo1-Mo5	89.06 (2)	Mo1-Mo2-Mo6	91.67 (2)
Mo1-Mo5-Mo6	89.31 (2)	Mo2Mo6-Mo5	89.92 (2)
O15b-Pt-O23d	82.1 (3)	O15b-Pt-O24d	177.0 (2)
O21c-PtO22c	170.0 (2)	019bPt023d	175.9 (2)
O23d—PtO24d	95.9 (3)	O19bPtO24d	81.7 (3)
O23d—Mo3—O15b	71.3 (2)	O24d—Mo4—O19b	70.3 (2)

Symmetry codes: (i) -x, -y, -z; (ii) 1 - x, -y, -z.

† Indicates protonated O atom.

‡ Interpolyanion hydrogen-bond distance.

The structure was solved by the heavy-atom method with UNICSIII (Sakurai & Kobayashi, 1979) and refined by blockdiagonal least-squares methods. Figures were produced using ORTEP (Johnson, 1965). All computations were performed on a HITAC M-680H computer at the Computer Centre of the University of Tokyo. This work was supported in part by the Non-Directed Research Fund of the Korea Research Foundation, 1991.

Lists of structure factors, anisotropic displacement parameters and complete geometry have been deposited with the IUCr (Reference: DU1074). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennenssee, USA.
- Lee, U. (1988). Bull. Korean Chem. Soc. 9, 256-257.
- Lee, U. & Sasaki, Y. (1984). Chem. Lett. pp. 1297-1300.
- Lee, U. & Sasaki, Y. (1994). Bull. Korean Chem. Soc. 15, 37-45.
- Ogawa, A., Yamamoto, H., Lee, U., Ichida, H. & Sasaki, Y. (1988). Acta Cryst. C44, 1879-1881.
- Sakurai, T. & Kobayashi, K. (1979). Rikagaku Kenkyusho Hokoku, 55, 69-77. (In Japanese.)